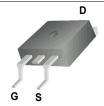


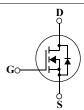
March 2013

# FCB20N60F

# N-Channel SuperFET<sup>®</sup> FRFET<sup>®</sup> MOSFET 600 V, 20 A, 190 m $\Omega$

#### **Features**


- 650V @T<sub>J</sub> = 150°C
- Typ.  $R_{DS(on)}$  = 150 m $\Omega$
- Ultra Low Gate Charge (Typ. Q<sub>g</sub> = 75 nC)
- Low Effective Output Capacitance (Typ. C<sub>oss</sub>.eff = 165 pF)
- · 100% Avalanche Tested
- · RoHS Compliant


# **Application**

- Lighting
- · Solar Inverter
- · AC-DC Power Supply

# Description

SuperFET® MOSFET is Fairchild Semiconductor® is first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. SuperFET FRFET® MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.





# MOSFET Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted\*

| Symbol                            |                                                           | Parameter                            |          | FCB20N60F   | Unit |
|-----------------------------------|-----------------------------------------------------------|--------------------------------------|----------|-------------|------|
| V <sub>DSS</sub>                  | Drain to Source Voltage                                   | Drain to Source Voltage              |          | 600         | V    |
| ı                                 | Drain Current                                             | -Continuous (T <sub>C</sub> = 25°C)  |          | 20          | А    |
| I <sub>D</sub>                    | Diam Current                                              | -Continuous (T <sub>C</sub> = 100°C) |          | 12.5        | ^    |
| I <sub>DM</sub>                   | Drain Current                                             | - Pulsed                             | (Note 1) | 60          | Α    |
| V <sub>GSS</sub>                  | Gate to Source Voltage                                    |                                      |          | ±30         | V    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2                    |                                      | (Note 2) | 690         | mJ   |
| I <sub>AR</sub>                   | Avalanche Current                                         |                                      | (Note 1) | 20          | Α    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy                               |                                      | (Note 1) | 20.8        | mJ   |
| dv/dt                             | Peak Diode Recovery dv/dt                                 |                                      | (Note 3) | 50          | V/ns |
| D                                 | Power Dissipation                                         | (T <sub>C</sub> = 25°C)              |          | 208         | W    |
| $P_{D}$                           | Power Dissipation                                         | - Derate above 25°C                  |          | 1.67        | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temper                              | ature Range                          |          | -55 to +150 | °C   |
| T <sub>L</sub>                    | Maximum Lead Temperature for 1/8" from Case for 5 Seconds | or Soldering Purpose,                |          | 300         | °C   |

### **Thermal Characteristics**

| Symbol             | Parameter                                         | FCB20N60F | Unit |
|--------------------|---------------------------------------------------|-----------|------|
| $R_{\theta JC}$    | Thermal Resistance, Junction to Case, Max         | 0.6       |      |
| R <sub>0JA</sub> * | Thermal Resistance, Junction to Ambient, Max*     | 40        | °C/W |
| $R_{\theta JA}$    | Thermal Resistance, Junction to Ambient, Max 62.5 |           |      |

<sup>\*</sup> When mounted on the minimum pad size recommended (PCB Mount)

# **Package Marking and Ordering Information**

| Device Marking | Device      | Package             | Reel Size | Tape Width | Quantity |
|----------------|-------------|---------------------|-----------|------------|----------|
| FCB20N60F      | FCB20N60FTM | D <sup>2</sup> -PAK | 330mm     | 24m        | 800      |

# **Electrical Characteristics** T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                                 | Parameter                                           | Test Conditions                                                             | Min. | Тур. | Max. | Unit |
|----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|
| Off Charac                             | cteristics                                          |                                                                             |      |      |      |      |
| D\/                                    | BV <sub>DSS</sub> Drain to Source Breakdown Voltage | $V_{GS} = 0 \text{ V,I}_{D} = 250 \mu\text{A, T}_{C} = 25^{\circ}\text{C}$  | 600  | -    | -    | V    |
| BVDSS                                  |                                                     | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}, T_C = 150^{\circ}\text{C}$    | -    | 650  | -    | V    |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature Coefficient           | I <sub>D</sub> = 250 μA, Referenced to 25°C                                 | -    | 0.6  | -    | V/°C |
| BV <sub>DS</sub>                       | Drain-Source Avalanche Breakdown<br>Voltage         | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 20 A                                | -    | 700  | -    | ٧    |
|                                        | Zoro Cata Valtaga Drain Current                     | V <sub>DS</sub> = 600 V, V <sub>GS</sub> = 0 V                              | -    | -    | 1    | ^    |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current                     | $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$ | -    | -    | 10   | μΑ   |
| I <sub>GSS</sub>                       | Gate to Body Leakage Current                        | V <sub>GS</sub> = ±30 V, V <sub>DS</sub> = 0 V                              | -    | -    | ±100 | nA   |

#### On Characteristics

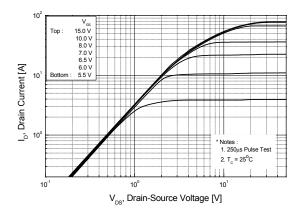
| V <sub>GS(th)</sub> | Gate Threshold Voltage               | $V_{GS} = V_{DS}, I_{D} = 250 \mu A$                 | 3.0 | -    | 5.0  | V |
|---------------------|--------------------------------------|------------------------------------------------------|-----|------|------|---|
| R <sub>DS(on)</sub> | Static Drain to Source On Resistance | $V_{GS} = 10 \text{ V}, I_D = 10 \text{ A}$          | -   | 0.15 | 0.19 | Ω |
| 9 <sub>FS</sub>     | Forward Transconductance             | $V_{DS} = 40 \text{ V}, I_D = 10 \text{ A}$ (Note 4) | -   | 17   | -    | S |

# **Dynamic Characteristics**

| C <sub>iss</sub>      | Input Capacitance            | V - 25 V V - 0 V                                                    | - | 2370 | 3080 | pF |
|-----------------------|------------------------------|---------------------------------------------------------------------|---|------|------|----|
| C <sub>oss</sub>      | Output Capacitance           | V <sub>DS</sub> = 25 V, V <sub>GS</sub> = 0 V<br>f = 1.0 MHz        | - | 1280 | 1665 | pF |
| C <sub>rss</sub>      | Reverse Transfer Capacitance | 1 - 1.0 Will2                                                       | - | 95   | -    | pF |
| C <sub>oss</sub>      | Output Capacitance           | $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ | - | 65   | 85   | pF |
| C <sub>oss</sub> eff. | Effective Output Capacitance | V <sub>DS</sub> = 0 V to 400 V, V <sub>GS</sub> = 0 V               | - | 165  | -    | pF |

# **Switching Characteristics**

| $t_{d(on)}$         | Turn-On Delay Time            |                                                 |             | - | 62   | 135 | ns |
|---------------------|-------------------------------|-------------------------------------------------|-------------|---|------|-----|----|
| t <sub>r</sub>      | Turn-On Rise Time             | V <sub>DD</sub> = 300 V, I <sub>D</sub> = 20 A  |             |   | 140  | 290 | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | $R_G = 25 \Omega$                               |             | - | 230  | 470 | ns |
| t <sub>f</sub>      | Turn-Off Fall Time            |                                                 | (Note 4, 5) | - | 65   | 140 | ns |
| Q <sub>g(tot)</sub> | Total Gate Charge at 10V      | V <sub>DS</sub> = 480 V, I <sub>D</sub> = 20 A, |             | - | 75   | 98  | nC |
| Q <sub>gs</sub>     | Gate to Source Gate Charge    | V <sub>GS</sub> = 10 V                          |             | - | 13.5 | 18  | nC |
| $Q_{gd}$            | Gate to Drain "Miller" Charge |                                                 | (Note 4, 5) | - | 36   | -   | nC |


### **Drain-Source Diode Characteristics**

| $I_S$           | Maximum Continuous Drain to Source Diode Forward Current |                                               |          | 1 | 1   | 20  | Α  |
|-----------------|----------------------------------------------------------|-----------------------------------------------|----------|---|-----|-----|----|
| I <sub>SM</sub> | Maximum Pulsed Drain to Source Diode Forward Current     |                                               |          | - | -   | 60  | Α  |
| $V_{SD}$        | Drain to Source Diode Forward Voltage                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 20 A |          | - | -   | 1.4 | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                    | V <sub>GS</sub> = 0 V, I <sub>SD</sub> = 20 A |          | - | 160 | -   | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge                                  | dI <sub>F</sub> /dt = 100 Å/μs                | (Note 4) | - | 1.1 | -   | μС |

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2.  $I_{AS}$  = 10 A,  $V_{DD}$  = 50 V,  $R_{G}$  = 25  $\Omega$ , Starting  $T_{J}$  = 25°C
- 3.  $I_{SD} \le$  20 A, di/dt  $\le$  1200 A/ $\mu$ s,  $V_{DD} \le$  BV $_{DSS}$ , Starting  $T_J$  = 25°C
- 4. Pulse Test: Pulse width  $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2\%$
- 5. Essentially Independent of Operating Temperature Typical Characteristics

# **Typical Performance Characteristics**

Figure 1. On-Region Characteristics



**Figure 2. Transfer Characteristics** 

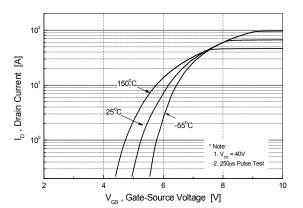



Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

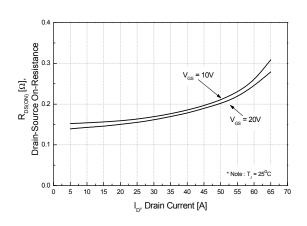



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

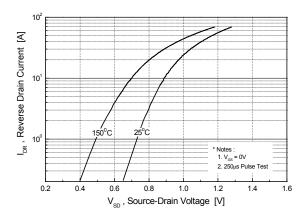



Figure 5. Capacitance Characteristics

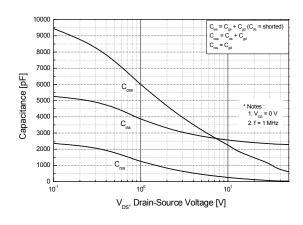
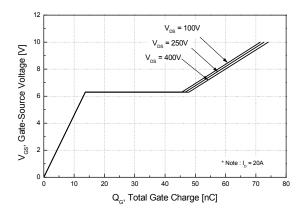




Figure 6. Gate Charge Characteristics



# Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

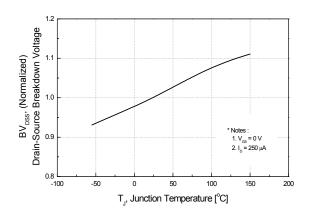



Figure 8. On-Resistance Variation vs. Temperature

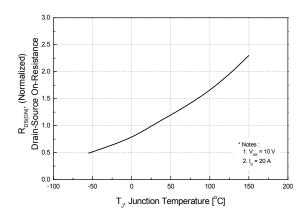



Figure 9. Maximum Safe Operating Area

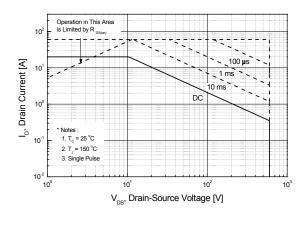
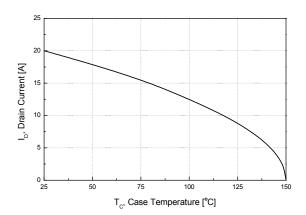
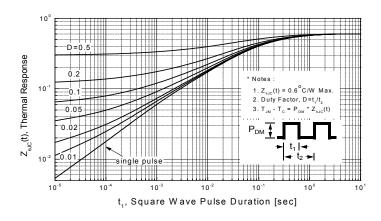
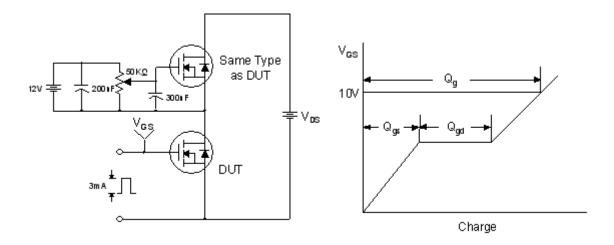
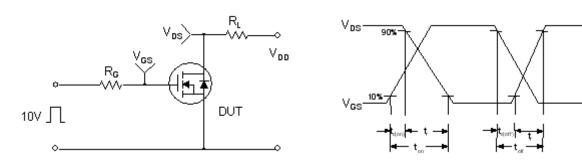
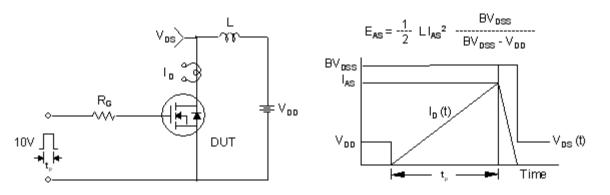



Figure 10. Maximum Drain Current vs. Case Temperature

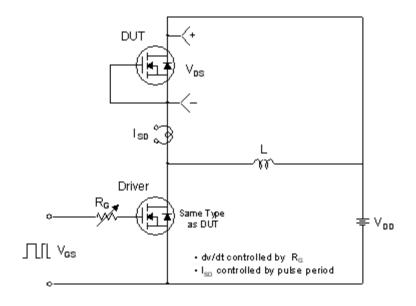




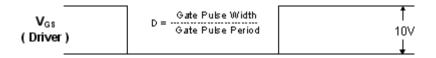


Figure 11. Transient Thermal Response Curve

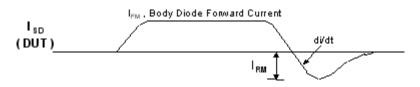


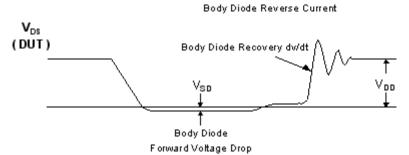

### **Gate Charge Test Circuit & Waveform**




### **Resistive Switching Test Circuit & Waveforms**

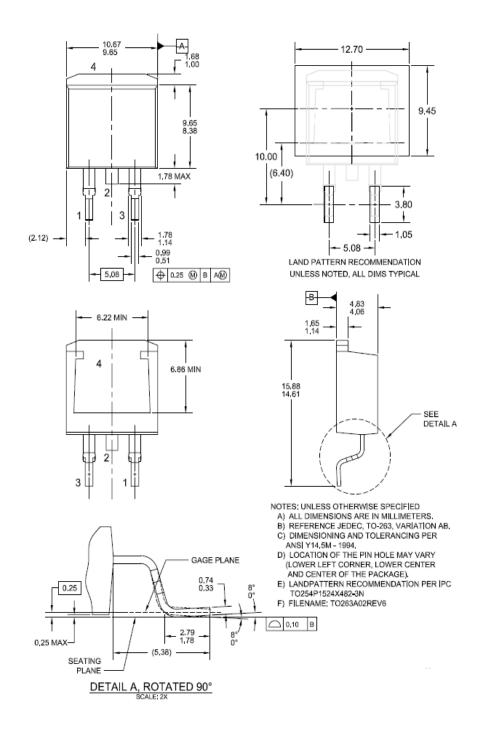




### **Unclamped Inductive Switching Test Circuit & Waveforms**




#### Peak Diode Recovery dv/dt Test Circuit & Waveforms










# **Mechanical Dimensions**

# D<sup>2</sup>PAK







#### **TRADEMARKS**

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ AccuPower™ F-PFS™ AX-CAP® FRFET®

Global Power Resource<sup>SM</sup> BitSiC™ Build it Now™ Green Bridge™ CorePLUS™ Green FPS™

CorePOWER™ CROSSVOLT™ CTL™

GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™

Dual Cool™ Marking Small Speakers Sound Louder EcoSPARK®

Gmax™

MegaBuck™ EfficentMax™ ESBC™ MICROCOUPLER™ MicroFET™

MicroPak™ MicroPak2™ Fairchild<sup>®</sup> MillerDrive™ Fairchild Semiconductor® MotionMax™ FACT Quiet Series™ mWSaver™ FACT<sup>®</sup> FAST® OptoHiT™ OPTOLOGIC® FastvCore™ OPTOPLANAR® FETBench™

(1)<sub>®</sub> PowerTrench® PowerXS™

Programmable Active Droop™

QFET® QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

STEALTH™

SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

SYSTEM®' TinvBoost<sup>1</sup> TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC®

TriFault Detect™ TRUECURRENT®\* uSerDes™

UHC® Ultra FRFET™ UniFET™ VCX<sup>TM</sup> VisualMax™ VoltagePlus™ XS™

\*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Green FPS™ e-Series™

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or

#### ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

#### PRODUCT STATUS DEFINITIONS **Definition of Terms**

| Datasheet Identification                  | Product Status | Definition                                                                                                                                                                                          |
|-------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information Formative / In Design |                | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary First Production              |                | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed Full Production  |                | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete Not In Production                |                | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.                                                    |

Rev. 164